Узбекнефтегаз Узатлетикс
(+998 71) 241-13-65
email: FLAU@exat.uz uzb@mf.worldathletics.org
Проспект И. Каримова д.98 А
Citius, Altius, Fortius!
Главная  Статьи  Как забраться на Эверест без кислородных баллонов? Как кислород влияет на спортивные возможности и почему кенийские бегуны такие быстрые?

Как забраться на Эверест без кислородных баллонов? Как кислород влияет на спортивные возможности и почему кенийские бегуны такие быстрые?

« Назад

01.04.2021 11:41

 

 

В марте в издательстве «МИФ» вышла книга «Выносливость» Алекса Хатчинсона – известного спортивного журналиста, в прошлом – бегуна на длинные дистанции и члена сборной Канады.

Алекс

Алекс был одним из двух репортеров, получивших доступ к проекту Nike Breaking2, где команда ученых помогала спортсменам пробежать марафон менее чем за 2 часа. В ходе проекта Хатчинсон посещал высокотехнологичные лаборатории по всему миру и изучал пределы выносливости. Именно об этом его книга – большое исследование психологических и физических аспектов подготовки. Он пишет об ограничениях разума, влиянии кислорода, тепла, жажды и боли.

Выносливость

Публикуем отрывок из главы «Кислород».

Кислород и Эверест

«Никого не прельщает перспектива стать овощем». Именно этот страх преследовал участников экспедиции ясным майским вечером 1978 года, когда Рейнхольд Месснер, дыша разреженным воздухом Южного седла Эвереста на высоте 7924,8 м над уровнем моря, надиктовывал заметки на миниатюрный диктофон. Он и его партнер по восхождению Питер Хабелер втиснулись в обледенелую палатку, внутри которой лежали груды снега в ожидании, когда их растопят слабым пламенем горелки, и смерзшиеся намертво спальные мешки. Обсуждая планы штурма вершины, намеченного на следующее утро, альпинисты вели довольно бессвязный диалог.

– Вот что я скажу, – заявил Хабелер. – Я поверну назад прежде, чем начну сходить с ума. 

– И я тоже! 

– Если я замечу симптомы повреждения мозга, я остановлюсь. 

– Если начнет теряться речь, мы заметим нарушение равновесия либо что-то в этом роде, мы, безусловно, должны повернуть назад, – согласился Месснер.

С географической точки зрения их путешествие не было шагом в неизвестность. К этому времени уже шестьдесят мужчин и две женщины достигли вершины Эвереста, следуя по стопам Эдмунда Хиллари и Тенцинга Норгея, совершивших первое восхождение в 1953 году. Но все они использовали дополнительный кислород, что, по мнению Месснера, умаляло их заслуги и портило впечатление.

«Даже самые высокие горы сжимаются, если их осаждают сотни носильщиков, атакуют с крючьями и кислородными аппаратами, – утверждал он. – С помощью кислородного баллона альпинист опускает Эверест до уровня шеститысячника».

Поэтому они с Хабелером решили попытаться обойтись без дополнительного кислорода: посмотреть, как далеко может зайти человек сам. «Я хочу карабкаться до тех пор, пока либо не достигну вершины горы, – писал Месснер, – либо не смогу идти дальше».

У обоих были веские основания для опасений: уже более полувека никому не удавалось преодолеть высоту, достигнутую Эдвардом Нортоном в 1924 году без кислорода. Физиологи обсуждали, что нужно сделать, чтобы преодолеть последние 300 м, и их выводы не слишком обнадеживали.

В 1929 году выдающийся итальянский ученый Родольфо Маргария провел серию изнурительных экспериментов над собой и тремя студентами: они крутили педали велотренажера в барокамере при постепенно понижающемся давлении. Анализируя данные, ученый обнаружил, что они могут не продолжать работать, когда давление упадет до 300 мм рт. ст.

Поскольку расчетное давление на вершине Эвереста составляло 240 мм рт. ст., он пришел к выводу, что достичь его без кислорода невозможно. Десять лет спустя аналогичный анализ, проведенный Янделлом Хендерсоном в Йельском университете и основанный на исследовании состояния акклиматизированных альпинистов из научных экспедиций на вершины по всему миру, привел к тем же выводам: вблизи вершины «скорость восхождения должна приближаться к нулю – иными словами, минимум прогресса за неограниченное количество времени».

Личность Рейнхольда Месснера, бородатого упрямого итальянца из немецкоязычной провинции Южный Тироль, уже вызывала много споров в альпинистских кругах. В своей первой гималайской экспедиции он и его брат Гюнтер проложили новый маршрут к вершине Нанга-Парбат, девятой по высоте (и одной из самых смертоносных) горе в мире. Но Гюнтер, страдавший горной болезнью, погиб под ледяной лавиной, и другие члены экспедиции позже обвинили Месснера (который из-за обморожения потерял семь пальцев на ногах) в том, что жажда славы была для него важнее безопасности своего брата. Сам Месснер это обвинение отрицает.

Рейнхольд был давним сторонником «альпийского стиля» восхождения (основное отличие альпийского стиля в том, что группа, выходя на восхождение, берет все необходимое с собой – прим.ред.), поддерживал использование легкого снаряжения при быстрых восхождениях маленькими, самодостаточными командами, а не «осадной тактики» больших экспедиций (при «осадной тактике» (гималайский стиль) заранее устанавливается цепочка лагерей, куда заносятся продукты и снаряжение, а также кислород, если он есть – прим.ред.). В 1975 году он и Хабелер завершили первое восхождение в «альпийском стиле» на вершину Гашербрум I (8080 м) без кислорода всего за три дня. 

Следующая большая цель была ясна, и Месснер с Хабелером остановились на девизе «Эверест по-честному» – только так. Шумиха в прессе вокруг этой попытки (еще один талант Месснера, который раздражал коллег-альпинистов) вызвала множество дискуссий. По сообщению газеты New York Times, эксперты «почти единодушно объявили восхождение без кислорода верным самоубийством» (все не так страшно: перед восхождением Месснер поднялся на самолете на 9000 м без кислородной маски, так что самоубийцей он не был).

Но не все были так скептически настроены. За несколько дней до своего полета в Непал Месснер получил письмо от сына Эдварда Нортона: «Безусловно, мой отец верил, что при благоприятных условиях Эверест можно покорить и без кислорода».

Это уточнение – «при благоприятных условиях» – было крайне важным. Все альпинисты, совершающие восхождение в Гималаях, очень быстро понимают, что погода и снежные условия так же важны, как физическая подготовка и акклиматизация. Во время их первого подъема на вершину Хабелер получил пищевое отравление в лагере-III и был вынужден спуститься; Месснер шел вперед с двумя шерпами, но затем их накрыл сильный шторм на Южном седле, и они оказались заперты в своей палатке на два дня. Она еле выдерживала порывы ветра до 200 м/с, температура упала до –40 °С. К тому времени, когда Месснер и Хабелер более чем через две недели вернулись на Южное седло, чтобы в последний раз попытаться взойти, они сами уже начали сомневаться в собственной цели.

Утро 8 мая предсказуемо выдалось ветреным и пасмурным. Альпинисты одевались два часа, а когда вылезли из палатки, им в лицо ударил заряд мокрого снега. Они все равно решили идти, но снег становился глубже, и в конце концов им пришлось карабкаться вверх по сложным голым скальным выступам.

Говорить было трудно, и они общались на языке жестов, царапая на снегу ледорубами надписи или стрелки, указывающие вверх или вниз. Когда они достигли последнего участка, прошло уже восемь часов. Они едва двигались вперед, ползли, падали в снег, чтобы отдохнуть, каждые десять-пятнадцать шагов. Наконец, дрожа от волнения, со слезами на глазах хватая ртом воздух, они оказались на вершине. Вот как Месснер описывал этот момент: «Я всего лишь узкое, задыхающееся легкое, плывущее над туманами и вершинами гор».

Успешное восхождение заставило физиологов пересмотреть теоретическую базу. Стало очевидно, что совершить такой подвиг возможно. Три года спустя крупная исследовательская экспедиция на Эверест измерила физиологические реакции участников на всем пути к вершине; в другом исследовании восемь добровольцев провели сорок дней в барокамере, полностью имитируя восхождение на Эверест, в то время как их толкали, подгоняли и доводили до изнеможения.

Новые данные показали: неудивительно, что восхождение Месснера и Хабелера без кислорода действительно было возможно, но потребовало серьезных усилий. Вскоре этот подвиг повторили и другие (согласно Гималайской базе данных, к июню 2016 года было совершено 197 бескислородных восхождений из 7646, выполненных 4469 альпинистами), включая самого Месснера, который в 1980 году вернулся, чтобы совершить одиночное восхождение со стороны Тибета.

Однако, с точки зрения физиологов, способность людей выживать в разреженном воздухе только по случайному совпадению достигла своего абсолютного предела в самой высокой точке планеты. «Если какой-нибудь эволюционный биолог сможет придумать причину этого, – писал в Annals of the New York Academy of Sciences в 2000 году Джон Уэст, опытный физиолог, занимающийся проблемами выживания на высоте, – было бы очень интересно узнать об этом». Совпадения, конечно, случаются. Приближение финиша и других конечных точек влияет на механизмы безопасности организма, и я не могу не заподозрить, что, если бы тектонические силы поставили перед нами пик высотой 9000 м вместо Эвереста (8848 м), кто-то поднялся бы и на него без дополнительного кислорода.

Кислород и тренировки на разной высоте

В январе 2013 года, в разгар лета, в Австралии, где мы тогда жили с женой, я начал готовиться к своему первому марафону. Я серьезно занимался бегом уже больше двадцати лет за вычетом нескольких перерывов, так что хорошо представлял себе, как буду реагировать на тренировочный режим. У меня были отличная группа, прекрасный тренер и дополнительная мотивация – я собирался писать о своем опыте в журнал Runner’s World, поскольку, помимо прочего, тестировал протокол тренировок на выносливость мозга Сэмюэля Маркоры.

Из-за случившейся прошлой осенью болезни моя спортивная форма оставляла желать лучшего, поэтому в марте я решил проверить, на что способен, и спокойно пробежать полумарафон. Секундомер на финише показал 1:15:08 – не ужасно, хотя я немного расстроился. В тридцать семь лет я уже не был в расцвете сил, но еще несколько лет назад мне удавалось показывать близкое к этому время на темповых тренировках средней напряженности. Очевидно, мне еще нужно было поработать, чтобы подготовиться к большому забегу.

Месяц спустя, окрепший и подтянутый, я снова попробовал силы в полумарафоне, чтобы окончательно настроиться. На этот раз все прошло гладко: я чувствовал себя хорошо, держал темп и закончил гонку, зная, что бежал в полную силу. Я показал результат лучше – 1:12:55, – но ненамного. На этот раз мне было труднее найти оправдание. Я три месяца набирал километраж и упорно тренировался, хоть и не лез из кожи вон, у меня не было ни серьезных травм, ни сбоев в тренировках. Если бы вы попросили меня примерно оценить время перед стартом, я бы сказал: 1:10:00. Я был подавлен, но в конце концов (и это преимущество помешанного на научном подходе к бегу) я придумал себе оправдание: высота.

В то время я жил в Канберре, расположенной в глубине материка на очень скромной высоте около 580 м. Обычно люди не думают о воздействии разреженного воздуха, если речь идет о высотах менее 1000 м. Однако в некоторых исследованиях тренировок на высоте контрольная группа низких высот живет выше 1000 м.

Вскоре после неутешительного результата на полумарафоне я брал интервью у ученых из базирующегося в Канберре Австралийского института спорта (AIS). Физиолог Лаура Гарвикан рассказала мне историю о временах, когда сразу после возведения института они настраивали в лабораториях сложное исследовательское оборудование. Несмотря на все усилия, измеренные учеными у спортсменов значения VO2max оставались немного ниже, чем у них же, но в других лабораториях. В конце концов исследователи начали задаваться вопросом: может ли высота иметь эффект? А потом решили проверить это с помощью барокамеры, которая позволяла моделировать условия различных высот. 

Исследование, опубликованное в 1996 году, показало любопытную закономерность. У неподготовленных испытуемых не было никакой разницы показателей VO2max на уровне моря и в Канберре. Но у тренированных велогонщиков VO2max снижался в среднем на 6,8% на высоте 580 м, и этот эффект, видимо, был вызван снижением количества кислорода, поступающего с кровью к работающим мышцам.

У выносливых спортсменов сердце бьется так мощно, что кровь едва успевает наполниться кислородом, когда течет через легкие. Даже на уровне моря примерно у 70% спортсменов, которым требуется особая выносливость, наблюдается заметное падение артериального уровня кислорода во время выполнения упражнений в полную силу, когда сердце работает наиболее активно (эта закономерность еще сильнее выражена у женщин и пожилых). Добавьте чуть более низкий уровень кислорода в окружающей среде на умеренной высоте, такой как Канберра, – и уровень кислорода в крови снизится достаточно, чтобы повлиять на поступление кислорода к вашим мышцам.

Эта же закономерность обнаруживается и у лучших бегунов мира, и даже у тех, кто вырос на гораздо больших высотах. Когда исследователи из Университета Британской Колумбии (UBC) отправились в высокогорный район Кении, чтобы оценить эффективность работы дыхательной системы и доставки кислорода к мышцам у первоклассных бегунов на длинные дистанции, они обнаружили аналогичное распространение «вызванной физическими упражнениями артериальной гипоксемии», или снижение уровня кислорода в крови во время тяжелых физических нагрузок, как и в других группах. «Это самые здоровые люди в мире, – сказал мне исследователь из UBC Билл Шил, – но их кровь по показателям насыщенности кислородом выглядит так, будто они в отделении интенсивной терапии».

Тогда я мог спокойно предположить, что мой VO2max, вероятно, чуть ниже из-за высоты, но мне не было сразу очевидно, почему при этом я бегу медленнее на такой дистанции, как полумарафон. В конце концов, хороший бегун на длинные дистанции может поддерживать в среднем 85% своего VO2max на протяжении 21 км, а на марафоне – в среднем 80%. За пределами лаборатории мы редко работаем на таких предельных режимах насыщения VO2max, потому что усилия, необходимые для этого, слишком велики, чтобы продержаться дольше десяти минут.

Ни на одном этапе полумарафона я не сталкивался вплотную с ограничением, связанным с тем количеством кислорода, которое кровь может донести до мышц. То же верно и для бега на длинные дистанции. Исследования спортсменов показали, что увеличение VO2max не обязательно пропорционально улучшению результатов в соревнованиях. Почему же VO2max имеет значение – и имеет ли?

Кислород и уровень VO2max

VO2max действительно оказывается хорошим показателем производительности. С его помощью нельзя определить победителя в группе близких по силам спортсменов (или лежебок как на подбор, если уж на то пошло). Но если собрать в группе разных людей, можно с уверенностью предположить, что те, у кого выше VO2max, будут превосходить тех, у кого ниже значения в тестах на выносливость, даже на больших дистанциях, таких как полумарафон, где никто не достигает своего VO2max.

Поэтому не случайно, что норвежский лыжник Бьёрн Дели, который много лет носил неофициальное звание человека с самым высоким показателем VO2max в мире, также был в какой-то момент самым титулованным спортсменом в истории зимних Олимпийских игр, заработав двенадцать медалей, из них восемь золотых. Говорят, он мог получать и использовать 96 мл кислорода на килограмм веса тела каждую минуту – типичный здоровый взрослый человек потребляет 40 мл.

Стоит критически отнестись к цифрам теста. Когда я спросил о знаменитом результате Бьёрна Дели известного американского спортивного ученого Стивена Сейлера, работающего в Норвегии с 1997 года, тот был настроен скептически, заподозрив проблему с достоверностью показателей. В 1990-е, на пике достижений Дели, Норвегия оказалась втянута в жестокую конкурентную лыжную «холодную войну» со Швецией, Россией, Италией и другими странами.

Когда вы дышите все интенсивнее, уровень углекислого газа в крови падает, что, в свою очередь, заставляет кровеносные сосуды, ведущие к вашему мозгу, сжиматься (то же происходит, когда вы намеренно дышите слишком глубоко, что приводит к головокружению, и в итоге вы теряете сознание). Возникающая в результате нехватка кислорода в мозге может непосредственно сказаться на работе мышц или способствовать ощущению усталости, сигнализируя о необходимости замедлиться или остановиться.

В 2010 году исследователи из канадского Университета Летбриджа показали, что количество кислорода в мозге у подготовленных бегунов из студенческих команд действительно падает в конце пятикилометрового забега. Затем, четыре года спустя, другая исследовательская группа (куда входил один из авторов предыдущего исследования) провела аналогичное исследование, в котором принимали участие пятнадцать профессиональных кенийских бегунов. Это были спортсмены мирового класса, пробегавшие полумарафон в среднем за 62 минуты. Во время забега на дистанции 5 км уровень кислорода в их мозге оставался примерно постоянным вплоть до конца дистанции.

Трудно сделать окончательные выводы из двух небольших исследований, однако ученые предположили, что организм у кенийцев способен лучше снабжать мозг кислородом и поддерживать его необходимый уровень. Это происходит благодаря тому, что они родились на высоте, в детстве вели очень активный образ жизни и в их мозге образовалось больше кровеносных сосудов. Эти сосуды имеют более толстые стенки, поэтому и сжать их труднее.

Купить книгу «Выносливость» можно на сайте МИФ

Источник: sports.ru



Комментарии


Комментариев пока нет

Добавить комментарий *Имя:


E-mail:


*Комментарий:


Расписание соревнований в 2025 году Чемпионат Азии по спортивной ходьбе на 20 км, Номи (Япония), 16 марта; Чемпионат Азии по марафону, Цзясин (Китай), 30 марта; 6-й чемпионат Азии U18, Джидда (Саудовская Аравия), 15-18 апреля; 26-й Чемпионат Азии, Гуми (Южная Корея), 27 мая – 31 мая; Чемпионат Азии по метаниям, Мокпо (Южная Корея), 14-15 июня.
Всемирный легкоатлетический тур в помещении: Gold 25 Jan: Astana Indoor Meet for Amin Tuyakov Prizes; 29 Jan: Belgrade Indoor Meeting; 2 Feb: New Balance Indoor Grand Prix; 4 Feb: Czech Indoor Gala; 7 Feb: INIT Indoor Meeting Karlsruhe; 8 Feb: Millrose Games; 13 Feb: Meeting Hauts-de-France Pas-de-Calais Trophee EDF; 16 Feb: Copernicus Cup; 28 Feb: World Indoor Tour Gold Madrid
Континентальный тур World Athletics Календарь соревнований: https://worldathletics.org/competitions/world-athletics-continental-tour/calendar-results
Расписание Бриллиантовой лиги Ванды на 2025 год Сямынь, Китай-26 апреля, Шанхай/Сучжоу, Китай-3 мая, Доха, Катар-16 мая, Рабат, Марокко-25 мая, Рим, Италия-6 июня, Осло, Норвегия-12 июня, Стокгольм, Швеция-15 июня, Париж, Франция-20 июня, Юджин, США-5 июля, Монако-11 июля, Лондон, Великобритания-19 июля, Силезия, Польша-16 августа, Лозанна, Швейцари-20 августа, Брюсель, Бельгия-22 августа, Цюрих (финал), Швейцария-27-28 августа
Чемпионат мира в закрытом помещении 21 - 23 марта, 2025 год, Нанкин (Китай)
World Athletics Relays Всемирная эстафета пройдет в китайском городе Гуанджоу в 2025 году с 10 по 11 мая
Всемирные Университетские Игры Легкоатлетические соревнования пройдут с 21 по 27 июля. В программе соревнований у женщин и мужчин: 100м, 200м, 400м, 800м, 1500м, 5000м, 10.000м, полумарафон, 20км с/х, 100м с/б / 110м с/б, 400м с/б, 3000м с/п, 4x100м, 4x400м, 4x400м микс, высота, шест, длина, тройной, ядро, диск, копье, молот, семиборье – женщины, десятиборье - мужчины
Азиатские Юношеские Игры Мультиспортивное мероприятие, проводимое каждые четыре года среди спортсменов стран Азии. Третьи Азиатские юношеские игры пройдут с 22 по 31 октября 2025 года в Бахрейне.
Чемпионат Мира по легкой атлетике ХХ по счету Чемпионат Мира пройдет в 2025 году с 13 по 21 сентября в столице Японии Токио. Здесь в 1991 году проходил III Чемпионат мира, который запомнился соревнованиями в прыжках длину, где победил Майкл Пауэлл с мировым рекордом – 8,95, результат продолжает оставаться мировым рекордом по настоящее время.
World Atletics Road Running Championships Чемпионат мира по шоссейному бегу пройдет в Сан-Диего, Калифорния, в 2025 году. Дистанции на соревнованиях: 1 миля, 5 километров и полумарафон.
VI Исламские Игры Солидарности Спортивная ассоциация исламской солидарности предоставила Эр-Рияду, столице Королевства Саудовская Аравия, право проведения 6-х Игр исламской солидарности в 2025 году. Соревнования пройдут с 5 по 15 августа.
Чемпионат мира U20 среди юниоров 21-й чемпионат мира по легкой атлетике U20 пройдет с 4 по 9 августа 2026 года в Юджине (США).
Юношеские Олимпийские Игры IV летние юношеские Олимпийские игры 2026 года пройдут в столице Сенегала городе Дакар с 31 октября по 13 ноября .
XX Летние Азиатские Игры XX Летние Азиатские игры пройдут в японских городах Айти и Нагое в 2026 году с 19 сентября по 4 октября.
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
НАШИ ПАРТНЕРЫ:
Партнер 1
Партнер 2
Партнер 3
Партнер 4
Партнер 5